
Champagne: a web tool for the execution of
crowdsourcing campaigns

Carlo Bernaschina, Ilio Catallo, Piero Fraternali, Davide Martinenghi and Marco Tagliasacchi
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano, Italy
first.last@polimi.it ∗

ABSTRACT
We present Champagne, a web tool for the execution of
crowdsourcing campaigns. Through Champagne, task re-
questers can model crowdsourcing campaigns as a sequence
of choices regarding different, independent crowdsourcing
design decisions. Such decisions include, e.g., the possibility
of qualifying some workers as expert reviewers, or of combin-
ing different quality assurance techniques to be used during
campaign execution. In this regard, a walkthrough exam-
ple showcasing the capabilities of the platform is reported.
Moreover, we show that our modular approach in the design
of campaigns overcomes many of the limitations exposed by
the major platforms available in the market.

Categories and Subject Descriptors
H.1 [Models and Principles]: User/Machine Systems;
H.5 [Information Interfaces and Presentation]: Group
and Organization Interfaces —computer-supported coopera-
tive work, web-based interaction

Keywords
Crowdsourcing, Web applications, Data collection

1. INTRODUCTION
Crowdsourcing is emerging as a compelling tool for solic-

iting contributions from individuals on the web. In partic-
ular, in the last few years a multitude of so-called crowd-
sourcing marketplaces have appeared on the web. Among
the most widely used, we cite Amazon Mechanical Turk1

and CrowdFlower2. Such crowdsourcing marketplaces are
web platforms whereby task requesters can publish their own
tasks, which are then solved by crowd workers registered to
the platform. More precisely, crowdsourcing marketplaces

∗This work is partly funded by the EC’s FP7 “Smart H2O”

project, and the EU and Regione Lombardia’s “Proactive”project
1http://mturk.com
2http://crowdflower.com

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742838.

take care of publishing tasks, collecting results, and han-
dling worker payment on behalf of the requester.

Task requesters could expect a crowdsourcing marketplace
not only to permit the deployment of crowdsourcing cam-
paigns at ease, but also to enforce the high quality of results,
as well as to facilitate their subsequent aggregation and col-
lection. Ideally, platforms should take care of these steps
with the highest possible degree of automation, so as to pose
themselves as off-the-shelf solutions for the requester.

However, as crowdsourcing is gaining a more prominent
role in both the industry and academia, current crowdsourc-
ing platforms are struggling in providing the fine-grained pa-
rameter selection requesters need. In fact, currently avail-
able crowdsourcing marketplaces suffer from several limita-
tions, such as the lack of ready-to-use solutions for imple-
menting worker hierarchies. As a result, requesters are fre-
quently forced to implement such functionalities themselves,
which tremendously increases the effort required for taking
advantage of crowd work. Different authors tried to address
these shortcomings by proposing toolkits for programming
the crowd (see, e.g., [2], [1], [3]). Such mechanisms try to
expand the capabilities offered to task requesters by pro-
viding already implemented patterns and facilities on top
of major crowdsourcing platforms. As an example, the au-
thors in [2] presented a JavaScript toolkit for implementing
human computation algorithms in an imperative fashion on
top of Amazon Mechanical Turk. Although partially eas-
ing the complexity behind the creation of a crowdsourcing
initiative, these toolkits still require task requesters to pro-
gram their own solution, and thus cannot be considered as a
proper ready-to-use solution. Moreover, each toolkit is usu-
ally tightly coupled with a particular crowdsourcing plat-
form, thus reducing the applicability of each toolkit-assisted
solution to the sole supported crowdsourcing platform.

A crowdsourcing platform capable of accommodating com-
plex requirements seems therefore much needed. To meet
this need, we present Champagne, a tool for the execution
of crowdsourcing campaigns on the web. Through Cham-
pagne, task requesters can model crowdsourcing campaigns
as a sequence of choices regarding different, independent de-
sign decisions. Such decisions include, e.g., the possibility of
qualifying some workers as expert reviewers, or of combin-
ing different quality assurance techniques to be used during
campaign execution.

The remainder of this demo description is organized as fol-
lows. In Section 2 we present the conceptual model of Cham-
pagne. In Section 3 we provide an overview of the system,
specifically focusing on the system architecture and exposed

171

API. Finally, In Section 4 we introduce a walkthrough ex-
ample with the aim of showcasing what attendees will be
able to do at the demo.

2. CONCEPTUAL MODEL

Campaign
Schema

Task
Schema

MicroTask
Schema

Campaign

Task

MicroTask

Session

Contribution

Micro
Contribution

Worker Requester

Policy

1 * 1 * * 1 1 *

1 *

*

1

1

1

1

*

1

*

1

*

1 *

1

*

1

*

Configuration Instantiation Execution

Figure 1: Champagne’s conceptual model

The conceptual model of Champagne is reported in Fig-
ure 1. In this regard, figure elements have been conveniently
positioned so as to induce a twofold relationship between
entities. Specifically, reading the figure top to bottom natu-
rally suggests a containment relationship between adjacent
entities, i.e., each top-level entity acts as a container for
the entity located below it (so that, e.g., different Tasks
may belong to the same Campaign). In a similar fashion,
reading the figure left to right partitions entities accord-
ing to their involvement in a specific phase of the crowd-
sourcing initiative lifecycle. As indicated by the labels lo-
cated at the bottom of the figure, we identify three distinc-
tive phases in the lifecycle of a crowdsourcing initiative, to
which we refer as the configuration, instantiation, and exe-
cution phase, respectively. During the configuration phase,
the task requester provides the specification of the crowd-
sourcing initiative. In this respect, in Champagne, each
crowdsourcing initiative is described by means of the triple
〈Campaign schema,Task schema,MicroTask schema〉. This
three-level configuration allows a set of tasks (each of which
might be in turn composed of different, heterogenous micro-
tasks) to be grouped together in order to form a campaign.
After their definition, campaigns are ready to be created.
As part of the instantiation phase, task requesters provide
the needed data in order for the campaign (and the associ-
ated tasks and microtasks) to be instantiated. Once created,
the campaign is made available on the platform, and crowd
workers can start providing their contributions. We indicate
this latter phase as the execution phase. Thanks to the de-
coupling between campaigns and campaign schemas, at any
moment task requesters can generate new campaigns from
their previously created campaign schemas. This mecha-
nism allows task requesters to take advantage of the fact
that, while in many cases campaign schemas are created
once and then seldom changed, campaigns are instead repet-
itively created at any time needed. As a welcome byproduct,
the platform itself provides a set of ready-to-use schemas,
thus further decreasing possible barriers to entry for task
requesters.

Furthermore, each campaign schema is associated with
one or more Policy instances. Differently from all other en-
tities in Figure 1, Policy denotes a family of concepts, rather

Payment
Policy

Batch Piecework Hourly

Filtering
Policy

Qualification
Restrictions Compound Qualification

Test

Scheduling
Policy

Gold
Standard Redundancy Multi Review

Quality
Policy

Majority
Voting

Expert
Review

0..*

1..*

T,E

T,E T,E

T,E

Peer
Consistency

Figure 2: The available Policies in Champagne

than a single entity. As a matter of fact, each policy embeds
a different, independent choice regarding the crowdsourcing
campaign. Specifically, we argue the need of four fundamen-
tal structural decisions, namely, i) which payment method
to adopt (Payment policy), ii) which crowd workers to allow
in the crowdsourcing campaign (Filtering policy), iii) how
to dispatch tasks to crowd workers (Scheduling policy), and
iv) which quality assurance mechanism to adopt while col-
lecting the contributions (QA Policy). For each such deci-
sion, Figure 2 depicts the different alternatives available in
the platform. As an example, w.r.t. payment policies, task
requesters may opt for either a hourly, batch or piecework
payment.

3. SYSTEM ARCHITECTURE

Crowd
worker’s
browser

Back-end
Server

Task
requester’s
browser

Task
requester’s
browser

3rd-party
apps

W
eb

 U
I

R
ES

T

A
PI

Web UI

Crowd
worker’s
browser

3rd-party
crowdsourcing
marketplace

Crowd
worker’s
browser

Figure 3: System architecture of Champagne

Starting from the conceptual model described in the pre-
vious section, we implemented a feature-complete proof-of-
concept implementation of Champagne, whose architectural
components are depicted in Figure 3. As shown, the system
comprises a web user interface, a REST API for third-party
integration, the back-end server, and the database. Let us
comment in greater detail on each of such components.

The web interface enables the interaction between the sys-
tem and its users, i.e., task requesters and crowd workers. As
exemplified in the next section, task requesters can leverage
the user interface in order to manage all the aspects related
to their campaigns, from specification to deployment and
monitoring. It is worth noting that, in contrast to other
platforms, task requesters are not limited in the set of op-
erations that can be executed through the user interface.
Crowd workers interact with the user interface as the sole
means for providing their contributions. Champagne assigns
a unique URL to each instantiated campaign. This fact, to-

172

gether with the availability in many crowdsourcing platforms
of the so-called “external tasks”, allows the engagement of
workers from external crowdsourcing platforms. Indeed, it is
sufficient to publish on the target third-party marketplace
one such external task. Crowd workers from the external
platform will then be redirect to Champagne as soon as they
accept the task.

Moreover, the platform exposes a set of REST API for
the integration with third-party applications. The REST
API doubles the set of operations a task requester can exe-
cute through the user interface, making them available in a
programmatic fashion. To this end, we adopt JSON as the
format for the representation of resources, which proved to
be an effective way of exchanging data between applications.
Note that the API offered by the platform is not meant as
a compensation w.r.t. the deficiencies of the user interface
(as is the case in, e.g., Amazon Mechanical Turk). This is
because, as we said, the user interface and the REST API
offers the same capabilities.

The back-end server implements the business logic of the
platform. Given the intensive load on the application in
terms of I/O operations, we opted for an event-driven ap-
proach, and choose Node.js3 as the implementing technol-
ogy. Finally, because of the richness and variability of the
information we need to store, we opted for MongoDB4, a
document-oriented database.

4. WALKTHROUGH EXAMPLE
In this section we introduce a walkthrough example with

the aim of showcasing the capabilities of the platform. Specif-
ically, the set of operations required for the instantiation of
a campaign is presented. A high-level description of the
process is as follows. First, the task requester logs into the
platform. If not already available, the task requester pro-
ceeds with the creation of the desired policies for the up-
coming campaign. At this point, the campaign schema is
ready to be assembled. In order to do so, the task requester
associates the policies previously created with the campaign
schema, and provides additional information required for the
specification of the task and microtask schema. Finally, the
task requester uploads the actual task data to the platform,
which proceeds with the instantiation of the campaign. Let
us now examine in depth each such step.

Step 1 - Signing in. As shown in Figure 4, after signing
in, the task requester is prompted with a dashboard page
summarizing statistics of interest regarding her campaigns.
To this end, the dashboard is organized so as to provide ac-
cess to crucial information at once in a intuitive and conve-
nient way, especially if compared with other commercially-
available platforms. In this respect, Amazon Mechanical
Turk does not provide a dashboard page to its requesters,
whereas CrowdFlower provides statistics only on a campaign
base. Such a design has the downside of requiring the task
requester to inspect each single running campaign separately
in order to verify the overall correct execution. Note that,
as far as this proof-of-concept implementation is concerned,
the dashboard page reports the completion status of the cur-
rently instantiated campaigns. However, we plan to provide
additional information, such as the time variation in the
number of accepted contributions over the different cam-
paigns, and more generally, statistics related to the crowd

3http://nodejs.org/
4http://mongodb.org

Figure 4: The task requester’s dashboard

workers’ performance throughout the different campaigns.
Through the navigation menu, available at the top of the
page, the task requester can create new policies to be later
associated with campaign schemas. For the remainder of
this section, we assume the task requester has not specified
any policy yet. Therefore, we proceed with an explanation
on how to create such policies. Due to the limited amount
of space, we will show the creation of two policies out of the
four introduced, specifically, filtering policies and payment
policies.

Figure 5: The creation of a filtering policy

Figure 6: The creation of a payment policy

Step 2 - Creating policies. As mentioned in Section 2,
we provide task requesters with the possibility of creating

173

policies independently of campaign schemas. We decided to
do so in order to provide a flexible mechanism for creating
crowdsourcing campaigns. Indeed, thanks to this high level
of decoupling, it is possible to associate the same policy with
different campaign schemas. As an example, in Figure 5 we
show the creation of a filtering policy that limits the access
to the associated campaigns to the sole crowd workers satis-
fying the specified requirements. In a similar manner, both
Amazon Mechanical Turk and CrowdFlower provide simple
filtering capabilities based on the geographical location of
the workers. Nevertheless, Champagne permits the selection
of additional constraints such as the education level and the
age of the participants to the campaign. In order to reduce
the risk of a malicious behavior, a crowd worker is inhibited
from revising the same demographic data for a period of six
months. In a similar fashion, it is possible to create payment
policy, as shown in Figure 6. In this case, the task requester
opted for a piecework payment, according to which crowd
workers will be compensated 0.05 USD per completed task.
Moreover, the task requester decided to grant crowd workers
with 0.01 USD as a reward for each contribution judged as
particularly significant or useful. Differently from other plat-
forms, we also support alternative payment policies, such as,
batch and hourly payments.

Figure 7: The creation of a new campaign schema

Step 3 - Specifying the campaign schema. As re-
ported in Figure 7, the campaign schema is now ready to
be assembled. As previously mentioned, this amounts to se-
lecting the policies of interest, as well as defining the task
and microtask schema. As an example, a campaign schema
with the objective of classifying tweets as relevant for cook-
ing is created under the name “Cooking Tweet”. Notice how
the current schema is associated with the policies created at
the previous step. In comparison, Amazon Mechanical Turk
and CrowdFlower promote a hard coupling between policies
and campaign schemas, so that it would not be possible to
apply the same exact set of policies to different campaign
schemas, therefore possibly forcing requester to duplicate
the same policies over and over again. With respect to the
task schema, the requester can specify the presence of some

content to be visualized. We support images (plain URL, In-
stagram and Flickr), videos (Vimeo, Youtube and HTML5),
tweets, and text. This capability stands as a clear advantage
w.r.t. other platforms, in which the creation of campaigns
involving complex content is hindered by the fact that the
responsibility of correctly visualizing such content is totally
on the task requester. In the example, the task requester re-
quires the visualization of tweets as the task content. More-
over, a classification microtask is defined, which requires the
crowd worker to indicate whether the tweet can be consid-
ered relevant for cooking.

Figure 8: The creation of a new Campaign

Step 4 - Instantiating the campaign. In the final
step, the task requester provides the data useful for the in-
stantiation of the campaign under the form of a JSON file
(Figure 8). With respect to the “Coooking Tweet”campaign,
a possible data file could be as follows:

[{

"id": 0,

"content": "https:// twitter.com/lilbristow8/status/547382172794232832"

}, {

"id": 1,

"content": "https:// twitter.com/ItsFoodPorn/status/544549175376224257"

}, ...]

As easily understandable, JSON better supports the high
variability in the specification of different campaigns when
compared to schema-based format such as CSV, which is in
fact adopted by both Amazon Mechanical Turk and Crowd-
Flower as the format for specifying tasks via user interface.
Finally, notice that the exact same information can also be
provided via the associated REST API call
POST https://api.champagnebox.io/campaign/new.

5. CONCLUSIONS
We presented Champagne, a tool for the execution of crowd-

sourcing campaigns on the web. In the context of a walk-
through example, we highlighted some of the capabilities of
our platform, and discussed how it compares with currently
available solutions in the market. In particular, we showed
that the modularity of the system allows the platform to
support task requesters in the creation of campaigns that
are not easily realizable with mainstream platforms. A full
video outlining the presented walkthrough example is avail-
able at http://www.champagnebox.io/www2015.

References
[1] S. Ahmad et al. “The jabberwocky programming environ-

ment for structured social computing”. In: UIST. 2011.

[2] G. Little et al. “Turkit: human computation algorithms on
mechanical turk”. In: UIST. 2010.

[3] P. Minder and A. Bernstein. “How to translate a book within
an hour: towards general purpose programmable human com-
puters with crowdlang”. In: WebSci. 2012.

174

