


















sourcing and supervised ensemble learning. The system ag-
gregates different single-source annotators, each extracting
topic labels from one part of the post (e.g., text, picture or
video). We use crowdsourcing to evaluate how relevant topic
labels are on a sample of Google+ posts. The crowdsourced
judgments enable us to understand the varying reliability of
the single-source annotators. We train an ensemble model
on the data obtained from crowdsourcing process.

Evaluating on a gold standard data set, we find the ensem-
ble model outperforms baseline method that naively com-
bines topic labels from all annotators in classifying topic
labels that are “Main or Important” topics. The ensemble
model also significantly outperforms a baseline method in
multiclass classification of topic labels into relevance cate-
gories.

Important user functions such as search and recommen-
dation will benefit from better topic labels. By greatly im-
proving the performance of how we apply topic labels to
social media posts, it is our hope that users will enjoy more
relevant and interesting posts.
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