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Figure 5: Behavior of different estimators with different pa-
rameters, which controls the strength of treatment effects
(λ1) and network effects (λ2), in the simulation model. The
overall percentage of nodes in treatment ρ = 0.5.

5.2 Real Online Experiment
In addition to the extensive simulations, we have also con-

ducted a real online experiment at LinkedIn using the net-
work A/B testing framework we have proposed. Specifically,
we have done the following:

1. Select a country as the sub-network to experiment on.

2. Apply our randomized balanced graph partition algo-
rithm to assign users from this country into treatment
and control groups.

3. Apply different Feed algorithms to the treatment and
control groups. Estimate the ATE after running the
experiment for two weeks.

Country NS (×106) RS dS

Brazil 19.9 0.932 41.6
United States 119.3 0.910 54.3
Netherlands 6.1 0.868 93.0

Chile 2.8 0.866 38.4
New Zealand 1.3 0.654 29.4

Table 4: Basic statistics about several countries. NS is
the size of the subnetwork, selected by the corresponding
country; RS is the self-containment measure defined in (16);
dS is the average degree of the selected subnetwork defined
in (17).

We note that unlike simulations, there is no ground truth
for this real world experiment. The Feed team has, however,
compared these two Feed algorithms globally in a uniformly
randomized A/B test, and the treatment Feed algorithm was
significantly better than control.

Our goal for the real world experiment is two-fold. First,
we would like to compare results from different estimators
in a real application setting to complement the observations
from simulations. In particular, we want to compare re-
sults with and without taking into consideration of the net-
work effects, and further, how our fraction neighborhood
exposure model compares with the neighborhood exposure
model. Second, as far as we know, we are the first to run a
real network A/B test. We would like to establish a process
for running network A/B test in practice. As we have seen
how the conclusions can differ drastically in real networks
compared to simulated networks, we hope this can bridge
the gap and encourage more research focusing on real appli-
cations in the area of network A/B testing.

5.2.1 Country Selection
We would like to select a country that has a well self-

contained LinkedIn social network. Ideally, It should be an
isolated sub-network that has as few connections to the out-
side of the country as possible to prevent network influence
to and from users outside. We use the following ratio to
quantify such “self-containment” for a set S of users:

RS =

∑
i,j∈S Ai,j∑

i∈S
∑
j∈S∪Sc Ai,j

, (16)

where Sc is the complement of S in the population network.
Remark that RS is the ratio between the edge count within
the set S and all the edges with one end in S.

In addition, we consider the average internal degree such
that the selected subnetwork is well connected. Consider-
ing selected sub-network S, the average internal degree is
defined as

dS =

∑
i,j∈S Ai,j

|S| . (17)

We calculate RS and dS for all countries on LinkedIn, and
among the ones with top RS ratios (shown in Table 4), we
decide to pick Netherlands as it has the highest average in-
ternal degrees and a reasonably large sized network (around
6 million users).

After selecting the Netherlands as the sub-network, we
applied the randomized balanced graph partition algorithm
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to divide it into 600 shards and randomly picked 300 of them
to receive treatment while the rest 300 to receive control.
Before performing the A/B test, we have also conducted an
A/A test, which is a controlled experiment where treatment
is identical to control. This was to confirm that no bias was
introduced during the experiment assignment process.

5.2.2 Online Results
We let the experiment run for two weeks before we col-

lected data for analysis. The metric we use for evaluation
is the average number of social gestures on Feed, such as
“like”, “comment” or “share”.

We compute the ATE based on the various estimators de-
scribed in Section 5.1.2. The results are shown in Table 5.
We have the following observations. (i) The ATE estimators
with consideration of network effects are all larger than the
estimate under SUTVA. This is yet another good confirma-
tion that there are indeed network effects presented in the
A/B experiment. (ii) The choice of θ in the neighborhood
exposure model matters. The sample mean estimator almost
doubles when θ changes from 0.75 to 0.9. On the other hand,
the Hajek estimator gives a smaller estimate when θ changes
from 0.75 to 0.9, this is due to small values of πi’s when θ is
large. (iv) The fraction neighborhood exposure model gives
larger estimates than existing methods.

Method ATE for social gestures

SUTVA 0.168
Neighbor. Exposure θ = 0.75 0.264
Neighbor. Exposure θ = 0.9 0.520
Hajek. Exposure θ = 0.75 0.625
Hajek. Exposure θ = 0.9 0.133
Fraction Exposure (I) 0.687
Fraction Exposure (II) 0.714

Table 5: ATE estimates from different models for the online
Feed experiment.

6. CONCLUSION AND FUTURE WORK
In this paper, we study the problem of network A/B test-

ing in real networks. We start by examining a recent A/B
experiment conducted on LinkedIn without considering net-
work structures, which motivates us to set up a framework
to study both the sampling and the estimation aspects of
the network A/B testing problem. To address the challenge
of degree heterogeneity in real social networks, we come up
with a new randomization scheme based on balanced graph
partitioning, for which an efficient and distributed algorithm
is proposed. Based on new sampling scheme, we propose a
new method to estimate the average treatment effect (ATE)
that is able to take into consideration of the level of network
exposure. Extensive simulations are conducted to evaluate
these methods and the results show that our new propos-
als can achieve both a smaller bias and a smaller variance.
We have also conducted a real online experiment under the
framework we have proposed and the results further validate
many observations from simulations.

On the other hand, there are still many open problems in
the field of network A/B testing that remain to be addressed,

especially with respect to real world applications. First of
all, we did not consider the influence strength between pairs
of nodes, which may have significant impact on determin-
ing users exposure status; Secondly, real social networks are
growing all the time, leading to rapid change of network
structures, which makes network A/B testing even more
challenging considering the effects of newly added edges and
nodes. To further complicate the problem, many real exper-
iments on social networks are aiming at increasing network
density, making the temporal variability a real, noticeable
issue. Thirdly, there are different forms of network interfer-
ence to be considered. For instance, in discussion groups,
information propagates from one user to all other users of
the same group, so every group acts as a fully connected
sub-network. However each user can belong to multiple
groups. In this case, the graph clustering randomization can
no longer split users into treatment and control under the
new information propagation structure. Lastly, our focus
here has been on ATE estimation, and we have not touched
upon how virality works and how to preserve it in a network
A/B testing setting. Given the complex structure of real
social networks and the way viral information propagates,
the framework proposed here may not be sufficient.

A/B testing in general is widely used and also well studied
in the industry as it offers the best scientific approach to
understand the causal impact of product changes on end
user behavior. However, the problem of A/B testing in a
social network setting is no where near solved. A lot of
work still remains to be done to make it a well-understood
problem in real world applications. We hope our work here
can bridge some of the gaps and encourage more research in
this area.
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